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FAA Sponsored Project 
Information

• Principal Investigators & Researchers
– Dirk Heider (PI) - Solange Amouroux
– John W. Gillespie, Jr. (Co-PI) - “C” Josiah Hughes

• FAA Technical Monitor
– Curtis Davies

• Industry Participation
– Gore (Munich, Germany)

• Provided membrane materials, access to instrumentation and technical input
– Donaldson Membranes (Warminster, PA)

• Provided membrane materials
– Hexcel (Seguin, Texas)

• Provided resin and fabric material and technical input
– Cytec (Anaheim, CA)

• Provided resin and fabric material and technical input
– EADS (Augsburg, Germany)

• Provided technical and financial input
– Boeing (Philadelphia, PA)

• Provided technical input
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AEROSPACE VARTM’D 
COMPONENTS

A400M CFC Cargo Door

Flap tracks for the A380
CH-47 Chinook Forward 

Pylon

Pressure Dome

Other BOEING Components
•LAIRCOM panels
•Leading edge 787
•Rear Bulkhead 787

C-17 Main Landing 
Gear Door



The Joint Advanced Materials and Structures Center of Excellence

• VARTM process:
– Main advantages: low cost, high fiber volume fraction, large scale parts
– Still some limitations

• Limited fundamental 
understanding of process

• High variability 
– From part to part
– In the same part

– Automation is still limited
– Certification for new 

aerospace applications

MOTIVATION
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APPROACH

• Establish the fundamental understanding of the various VARTM processes
– Flow model is fully developed for SCRIMP, VAP, and CAPRI process
– Compaction behavior has been evaluated for all processes

• Dry compaction during debulking
• Relationship between compaction, permeability and pressure changes has been 

established
– Effect of resin bleeding

• Model has been implemented
– Effect of dual-scale flow behavior has to be further studied to better understand micro-void 

formation

• Optimize membrane material (VAP)
– Understand membrane mechanisms
– Recommend material improvements (increased pressure, improved drapability)

• Establish an elevated temperature VARTM work cell for toughened epoxies
• Develop a material database for aerospace resins



The Joint Advanced Materials and Structures Center of Excellence 6

VARTM Process Variations

1. Seemans Resin Infusion Molding Process (SCRIMP)
Use of Distribution Media
Patent held by TPI Inc.

2. Vacuum-Assisted Processing (VAP)
Use of an additional membrane
Patents held by EADS
Reduces Void Content, Improves Process robustness

3. Controlled Atmospheric Resin Infusion Process (CAPRI)
Reduced pressure differential
Patent held by the Boeing Co.
Reduces thickness gradient, improves fiber volume fraction variation
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Process Variations: 
The CAPRI Process

• Controlled Atmospheric Pressure Resin Infusion
• Adds vacuum debulking and reduce pressure 

differential to setup

 
Lay-up of the reinforcement

Vacuum Debulking
of the Preform

Infusion
Full Pressure 

Gradient
Partial Pressure 

Gradient

Cure

CAPRI

CAPRI

Advantages
• Increased Fiber Volume Fraction
• Reduced Gradients

• Pressure
• Thickness 
• Fiber Volume Fraction

Disadvantages
• Decrease in fabric permeability
• Increase in flow times
• Increase in lead length

CAPRI Patent held by Boeing
Woods, J., Modin, A. E., Hawkins, R. D., Hanks, D. J., “Controlled Atmospheric Pressure Infusion 
Process”, International Patent WO 03/101708 A1.
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Effect of Debulking on Thickness 
and Permeability

• The thickness and spring-back behavior is greatly reduced during 
debulking
– Reduces thickness gradient

• Initial Thickness: 9.14 mm Debulked Thickness:  8.76 mm
– Increases Fiber Volume Content (Fv ):  

• Initial Fv = 54%  Debulked Fv = 58%
– Decreases permeability

• In Plane 5x reduction, Out-of-Plane 10x reduction in Permeability

Effect of Debulking on Compaction Behavior
 15 Layers E-Glass
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CAPRI Flow Behavior

• Flow behavior changes due to reduced 
pressure gradient and decreased 
permeability

• 1-D analytical flow model has been developed and can predict lead 
length and fill time
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Thickness Behavior Comparison 
between CAPRI and SCRIMP

• Debulking can 
greatly increase 
final fiber volume 
fraction

• The thickness 
gradient is reduced 
when the CAPRI 
pressure is applied 
(insignificant for 
the debulked case)
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MEMBRANE-BASED VARTM 
PROCESSING (VAP)

• Utilize membrane cover to 
allow continues degassing 
and uniform vacuum 
pressure during VARTM 
processing
– Reduces void content
– Improves uniformity (fiber 

volume fraction, thickness)
– Eliminates dry-spots

ToolTool

Membrane

VAP Processing Reduces Final Void Content
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•Desirable Characteristics for a 
membrane used in VARTM:

– Gas permeable material
• OR High air permeability through the thickness

– Resin-proof material
• OR Low liquid/resin permeability through the 

thickness

•Compatibility with resin
– Compatible: The resin does not go through the 

membrane and is forced into the part
– Incompatible: The resin penetrates the 

membrane

Low liquid 
permeability

High air 
permeability

www.gore-tex.co.uk

MAIN REQUIREMENTS OF 
THE MEMBRANE

Air and volatiles can travel through the membrane

Resin is infused in the part

Resin cannot go through the membrane

Resin is forced to remain in the part

Support

Membrane
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Membrane Model 
Development

13

•Goal
• Predicts the permeability of the 
membrane as a function of 
pressure

• Zero permeability for 
pressures below the capillary 
pressure of the largest pore in 
the membrane

• Predict the impregnation time of 
the membrane by the resin to 
make sure that: timpregnation ≥
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Statistical Analysis of 
Membrane

• Analysis and model implementation can be used to 
predict membrane performance for a wide variety of 
resin choices and process approaches (includes 
higher pressure application such as autoclave)

• Can be used to optimize membrane behavior
– Increase contact angle, surface tension
– Decrease “tail” of pore size distribution

• Effect of stretching can be incorporated in model 
(TBD) 14

Fitted Porometer Data Improved Pore Size
Distribution

Permeability vs 
Pressure

Penetration Time
vs. Pressure
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On-Going Work 
Draping Investigations

Industry experienced membrane failure for parts with 
complex draping requirements. To address this issue, basic 
characterization and a study of biaxial stretching of the 
membrane are performed.

• Basic characterization of the membrane was conducted to obtain its Young’s 
modulus, strain at break…

• Because the membrane is made of PTFE, we suspected that its mechanical 
behavior was strain rate dependent, which was confirmed. Therefore, it 
appeared crucial to choose the right strain rate to conduct our study.

• In order to address the behavior of the membrane and determine whether 
the membrane deforms mainly elastically or plastically, cycling was 
performed on the material.

• Finally, to simulate more closely the deformation that the membrane can 
encounter while being used in VARTM, a biaxial stretching setup was 
created.



The Joint Advanced Materials and Structures Center of Excellence

SEM 
Microstructure

16

SEM Images of unstretched
membrane.

Node - fibril structure accounts for 
small pores and high permeability.
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Stretching Behavior

17

The hybrid construction of the Composite 
Manufacturing Membrane (ePTFE
Membrane and Fabric Support) has long 
been believed to be the cause of premature 
tearing of the ePTFE membrane. 

The ePTFE Membrane is transversely 
isotropic while the support is orthotropic (a 
plain weave fabric).
A study of the Poisson Ratio of the 

Membrane and the support was undertook 
to analyze if the strain differences between 
the support and the membrane were 
sufficient to cause localized tears in the 
membrane and thus leaks.
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SEM Images 
Stretch Damage

18

SEM Images of stretched samples show 
visible affects of fibril tearing

At 23% Unidirectional Strain, fibrils were 
dislocated from nodes and visible cracks 
and damage were present.  
The membrane alone does not exhibit this 
behavior, so there must be some support 
limitations causing the damage.
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Effect of Stretch on Pore Size
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Stretching the membrane 
changes the distribution of 
pores. 

The jump around 20% is 
verified by the damage 
seen in the stretched SEM 
images.
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Strain Behavior: 
Membrane v. Membrane & Support

20

Stretching Direction

Different Microstructures are observed when the membrane is stretched (both stretched 
to 20%) with and without the support.

The stretching direction is horizontal and in the sample stretched without the support, 
significant scissoring was observed.

Membrane and Support Membrane Alone
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Poisson Ratio Mismatch

The Poisson Ratio of 
the Membrane 
(Transversely Isotropic) 
and the Support 
(Orthotropic) create 
orthogonal strains in a 
standard tensile sample.  
The membrane is far 
more elastic than the 
support. 

The damage is 
believed to be a result 
of the support tearing, 
not the membrane 
being over-strained.
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Autoclave

22

Some autoclave experiments have 
been performed to demonstrate the 
change in capillary pressure at various 
strains.
The membranes were characterized 
using the porometer and contact angle 
experiments.  
The values for the stretched 
membranes were used as inputs to 
determine the experimental capillary 
pressure.
The analytical capillary pressures 
were compared to experimental values 
obtained in the autoclave.

to
p 
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Bagging film
Tacky tape
Membrane 
Resin
Breather cloth  
Sensors
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Aerospace VARTM Requires 
Elevated Temperature Processing

TRANSITIONED FOR R&D 
AND PRODUCTION AT 
DASAULT AVIATION (Paris, 
France)
Also available to other companies

Sensor Based Infusion Technology
Robust System Construction
Re-Configurable Infusion Schemes
Improved Resin Mixing System
Statistical Data Sampling During Infusion & Stag0
Electronic Work Instruction
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Develop Property Database

1. Unnotched Tensile D-5766
2. Unnotched Compression D6484
3. Open hole compression D-6484
4. Filled Hole Compression D-6742-02
5. Pin Bearing D-5961
6. Short Beam Shear D-2344
7. Drop weight Impact D 7136
8. Compression after Impact (CAI) D-7137
9. Interlaminar Tension (D-5415)

ALL Tests will be conducted at room temperature 
and 180F/80% hot/wet conditions using

Cytec Epoxy Cycom 977-20 and T700 PW fabric
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Mechanical Property 
Evaluation

25

Panel Geometry 
and specimen location

Preliminary Data
Will be compared with 
autoclave processed 

panels
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A Look Forward

• Benefit to Aviation
– Improved fundamental understanding of VARTM processing to 

understand benefits and disadvantages of various process 
variations

– Reduce part-to-part variations / improve allowables
– Automated VARTM will allow QA/QC of part production reducing 

costs and improve quality while maintaining traceability
– Open-access database of structural properties

• Future needs
– Work close with VARTM manufacturers to transition technology
– Improve VARTM to achieve autoclave-level quality
– Investigate more complex geometries / unitized structures
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